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Abstract 

Shum [9] in his work on systems of semigroups and its application in constructing generalized 

cryptogroups introduced the concepts of Green 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 on �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroups  by using 

the generalized strong semilattice of semigroups, he also used a generalization of a well-known 

result of fountain on super-abundant semigroup to show that �̃� − 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑜𝑢𝑝  is regular �̃� −
𝑐𝑟𝑦𝑡𝑜𝑔𝑟𝑜𝑢𝑝   if and only if it is an 𝐻�̃� − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑠𝑒𝑚𝑖𝑙𝑎𝑡𝑡𝑖𝑐𝑒 of completely  𝐽 − 𝑠𝑖𝑚𝑝𝑙𝑒  

semigroups. In this paper further explanation were made and proves of some lemmas, additional 

characteristics of the  𝐻 − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup is proved. Lastly the concepts of   �̃� −
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup in group with examples is given. 

Keywords: Green ∼relations, �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroups, �̃� − 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑜𝑢𝑝, Cosets and       

Congruence 

 

Introduction 

The aspect of regularity in semigroup theory is an important one, this can be described as core 

semigroup because groups are regular semigroups with a unique idempotent element. Many 

scholars have used them in the course of their research. A regular semigroup is said to be 

completely regular if S is a union of some of it’s subgroup (2), it was also proved by Clifford that 

if S is a completely regular semigroup whose idempotent are central then, such semigroup can be 

expressed as a strong semilattice of groups. Guo-Shum (7) showed that a perfect abundant 

semigroup can be expressed as a strong semilattice of cancellative planks. 

Green relations can be used in describing the regular semigroups, Pastign (9) was first to introduce 

the Green∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 which can be regarded as the Green relation in some oversemigroup. The 

Green∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 was first observed to be applicable in the study of abundant semigroup and in 

particular super abundant semigroup fountain (4) and (5). 

 For any element 𝑎, 𝑏 ∈ 𝑆 where S is a semigroup Fountain [4] defined The extended green relation 

as follows: 

 𝐿∗= {(𝑎, 𝑏)  ∈  𝑆 ×  𝑆 ∶  (∀𝑥, 𝑦 ∈  𝑆1 )𝑎𝑥 =  𝑎𝑦 ⇔  𝑏𝑥 =  𝑏𝑦}, 

 𝑅∗ = {(𝑎, 𝑏)  ∈  𝑆 ×  𝑆 ∶  (∀𝑥, 𝑦 ∈ 𝑆1 )𝑥𝑎 =  𝑦𝑎 ⇔  𝑥𝑏 =  𝑦𝑏}, 
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 𝐻∗ = 𝐿∗ ∩   𝑅∗ , 𝐷∗ =   𝐿∗ ∨  𝑅∗ . 

 Later on, El-Qallali further generalized the Green ∗relations to Green ∼relations [3] as follows:  

�̃� = {(a, b) ∈ S × S : (∀𝑒 ∈  𝐸(𝑆)) 𝑎𝑒 =  𝑎 ⇔  𝑏𝑒 =  𝑏},  

�̃� = {(𝑎, 𝑏)  ∈  𝑆 ×  𝑆 ∶  (∀𝑒 ∈  𝐸(𝑆)) 𝑒𝑎 =  𝑎 ⇔  𝑒𝑏 =  𝑏}, 

�̃�  =  �̃�   ∩  �̃�, �̃� 𝑠 =  �̃�   ∨  �̃� 

It is obvious that  𝐿 ̃and the �̃� are equivalent relation on S, however, the 𝐿 ̃relation is not necessary 

to be right compatible with the semigroup multiplication and the 𝑅 relation is not necessary to be 

left compatible with the semigroup multiplication. If a semigroup S is regular, then every L-class 

of S contains at least one idempotent, and so does every R-class of S. If S is a completely regular 

semigroup, then every H-class of S contains an idempotent. According to Fountain [4], a 

semigroup is abundant if every 𝐿∗  and 𝑅∗class of S contains some idempotent. In other words, the 

term “abundant” means that the semigroup has plenty of idempotent. Clearly, we have 𝐿∗ = L on 

the set of all regular elements of a semigroup. Thus, regular semigroups are obviously special 

abundant semigroups. Hence Fountain called a semigroup superabundant [4] if every of its H* -

classes contains an idempotent. Obviously, completely regular semigroups are special 

superabundant semigroups. Following Elqallali [3], we call a semigroup S a semi-abundant 

semigroup if every �̃�-class and every �̃�-class of S contain at least one idempotent. A semigroup S 

is called �̃�-abundant if every �̃�-class contains an idempotent of S. Clearly, the �̃�-abundant 

semigroups are generalizations of superabundant semigroups in the class of semiabundant 

semigroups. One can easily see that �̃� = L on the set of regular elements in any �̃�-abundant 

semigroup.  

Now we notice that from the various extension of the green relation that 𝐷∗ = 𝐿∗ ∨ 𝑅∗ ≠ 𝑅∗ ∘ 𝐿∗, 
but �̃� = �̃� ∨ �̃� = �̃� ∘ �̃� 

Proof 

�̃� = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: (∀𝑒 ∈ 𝐸(𝑠))𝑎𝑒 = 𝑎 ⇔ 𝑏𝑒 = 𝑏 

�̃� = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: (∀𝑒 ∈ 𝐸(𝑠))𝑒𝑎 = 𝑎 ⇔ 𝑒𝑏 = 𝑏 

Let S be a semigroup, let 𝑎, 𝑏 ∈ �̃� ∘ �̃� then there exists 𝐶 𝑖𝑛 𝑆 

 Such that 𝑎�̃�c and 𝑐�̃�𝑏 and 𝑐�̃�b so that  

𝑎𝑒 = 𝑐      𝑓𝑐 = 𝑏  

𝑐𝑒 = 𝑎      𝑓𝑏 = 𝑐 

Were 𝑒, 𝑓 ∈ 𝐸(𝑆) 

Then let 𝑢 = 𝑓𝑐𝑒 
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𝑓𝑎 = 𝑓𝑐𝑒 = 𝑢 

𝑓𝑢 = 𝑓𝑓𝑐𝑒 = 𝑓𝑏𝑒 = 𝑐𝑒 = 𝑎 

So that we have  𝑎�̃�𝑢 secondly 

𝑢𝑒 = 𝑓𝑐𝑒𝑒 = 𝑓𝑎𝑒 = 𝑓𝑐 = 𝑏 

𝑏𝑒 = 𝑓𝑐𝑒 = 𝑢 so that we will have 𝑢�̃�𝑏 

Next is to show that 𝐷∗ = 𝐿∗ ∨ 𝑅∗ ≠ 𝑅∗ ∘ 𝐿∗. 

The �̃� relation is not necessary right compactible unlike 𝑙∗ , we say that a relation 𝜌 on S is right 

compactible  if (∀𝑠, 𝑡, 𝑎 ∈ 𝑆) (𝑠, 𝑡) ∈ 𝜌 ⟹ (𝑎𝑠, 𝑎𝑡) ∈ 𝜌 so whenever 𝑎 ∉ 𝐸(𝑆), �̃� will not be right 

compatible this implies that �̃� is not always left compactible like wise. 

Let denote the �̃� − 𝑐𝑙𝑎𝑠𝑠 containing the element 𝑎 of the semigroup S by 𝐿�̃� and observe that 𝐿 ⊑
𝐿∗ ⊆ �̃�. For every L-relation there always exist a corresponding dual relation namely R-relation. 

It is obvious that there exists at most one idempotent of the semigroup S in each class, now if 𝑒 ∈
𝐻�̃� ∩ 𝐸(𝑆) for some 𝑎 ∈ 𝑆 then for any 𝑥 ∈ 𝐻�̃�, we clearly have that 𝑥 = 𝑒𝑥 = 𝑥𝑒 

If every class of �̃� has at most one idempotent element and of course ∀ 𝑥 ∈ �̃�, 𝑥 = 𝑒𝑥 =
𝑥𝑒 𝑤ℎ𝑒𝑟𝑒 𝑒 ∈ 𝐸(𝑠), we have only to show that every 𝑥 ∈ �̃� has an inverse in �̃�. 

If a semigroup S is regular, then every L-class of S contains at least one idempotent likewise the 

R-class. 

If every element of S is contained in a subgroup of S, then every H-class of S also contains an 

idempotent. 

In a class of semi-abundant semigroup, a completely regular semigroup S is called a regular band 

cryptogroup if the Green H-relation on S is regular band congruence. An abundant semigroup 

whose set of idempotent forms a regular band is called cyber group Guo and Shum so that the 

structure of regular cyber group was also first investigated by them. 

Xiangrhi Kong, Yue Ding and K.P shum (2008) introduce the concepts of Green ∼-relations on 

He-abundant semigroups. By using the generalized strong semilattice of semigroups, and show 

that  �̃� − 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑜𝑢𝑝 is a regular �̃� − 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑜𝑢𝑝  if and only if  it is an 

𝐻�̃� 𝑠𝑡𝑟𝑜𝑛𝑔 𝑠𝑒𝑚𝑖𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑜𝑓  completely 𝐽 − 𝑠𝑖𝑚𝑝𝑙𝑒 semigroup. 

Kar-ping Shum, Lan Du and Yuq Guo 2010 gave some examples to illustrate some special 

properties of generalized Green’s relations which are related to completely regular semigroup and 

abundant semigroup. 

Preliminaries 

Definition 1.1 

about:blank
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Regular Semigroup-: This is a semigroup S in which every element is regular i.e for each a in S 

there exist 𝑥 in S such that 𝑎 = 𝑎𝑥𝑎 

Definition 1. 2 

Simple semigroup-: A semigroup S without zero is said to be simple if S contain no proper two 

sided ideal. 

Definition 1. 3 

Semilattice -:  A partially ordered set X is called a lower (upper) semilattice if , for all 𝑎, 𝑏 ∈ 𝑋𝑛 

the meet 𝑎⋀𝑏 (the join 𝑎 ∨ 𝑏) exists .If we have the stronger property that for every non-empty 

subset 𝑌 𝑜𝑓 𝑋,the meet ∧ {𝑦: 𝑦 ∈ 𝑌} (the join ∨ {𝑦: 𝑦 ∈ 𝑌}) exist , then we say that X is a complete 

lower (upper) semilattice , if X is complete lower semilattice and a complete upper lattice  we call 

it a complete lattice. 

Definition 1.4 

Complete Simple Semigroup:- A semigroup S (without zero) is complete if it is simple and 

contains a primitive idempotent or 

A semigroup S is completely simple if  

I. S is simple 

II. To each 𝑎 in S there exist idempotent 𝑒 and 𝑓 in 𝑆 such that 𝑒𝑎 = 𝑎𝑓 = 𝑎 

III. Every idempotent of S is primitive  i.e if 𝑒 ∈ 𝐸(𝑠) by 𝑓 = 𝑒𝑓 = 𝑓𝑒 it follows 𝑓 = 𝑒 

Definition 1.5 

Congruence:- let S be semigroup a relation 𝜌 𝑜𝑛 𝑆is called: 

• Left compactible if (∀𝑠, 𝑡, 𝑎 ∈ 𝑆)(𝑠, 𝑡) ∈ 𝜌 ⟹ (𝑎𝑠, 𝑎𝑡) ∈ 𝜌 

• Right compactible if (∀𝑠, 𝑡, 𝑎 ∈ 𝑆)(𝑠, 𝑡) ∈ 𝜌 ⟹ (𝑠𝑎, 𝑡𝑎) ∈ 𝜌 

• Compactible if (∀𝑠, 𝑡, 𝑥, 𝑦 ∈ 𝑆)(𝑠, 𝑡), (𝑥, 𝑦) ∈ 𝜌 ⟹ (𝑠𝑥, 𝑡𝑦) ∈ 𝜌 

A left (right) compactible equivalence is called a left (right) congruence. A compactible 

equivalence is called congruence. 

Definition 1.6 

Band: A semigroup in which every element is idempotent is called a Band 

Definition 1.7 
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Normal band :- A band B is called normal if for 𝑎, 𝑏, 𝑐 𝜖𝐵 𝑐𝑎𝑏𝑐 = 𝑐𝑏𝑎𝑐 

Definition 1.5  

Clifford semigroup:  A semigroup in which every element is a group element that is, lies in some 

subgroup. An element of a semigroup is a group element if and only if it is completely regular. 

Every Clifford semigroup has a unique decomposition into groups, the classes of which are exactly 

the H-class, also Clifford semigroup is completely simple if it is simple. 

The following conditions are equivalent for a Clifford semigroup 

1) S is inverse 

2) Every idempotent of S lies in the Centre, that is, it commutes with every element of S 

3) Every one-sided of S is two sided 

4) The Green relations H and D on S coincide 

5) S is a semilattice of groups 

6) S is subdirect products and group with zero. 

 

Theorem1: A regular semigroup can be expressed as a union of group if and only if it is a 

semilattice of completely simple group. 

Before the proof we will look at some lemmas: 

Lemma 1: S is a semigroup that admits relative inverses, if it satisfies the following condition. 

• To each elements 𝑎 of 𝑆 there exist an element 𝑒 of 𝑆 such that 𝑒 is an idempotent element 

of a. 

𝑒𝑎 = 𝑎𝑒 = 𝑒 

• 𝑎 possesses an inverse 𝑎1 relative to e in S 

𝑎𝑎1 = 𝑎1𝑎 = 𝑒 

Then 𝑒 is idempotent 

Proof: 

𝑒2 = 𝑒𝑎1𝑎𝑎1 = 𝑎𝑒𝑎1 = 𝑎𝑎1 = 𝑒 

Lemma 2: if 𝑎 is any element of S, and 𝑒 is any element of S satisfying lemma 1, then 𝑒 is 

idempotent. 

Proof: 

𝑒2 = 𝑎𝑎1𝑎𝑎1 = 𝑎𝑒𝑎1 = 𝑎𝑎1 = 𝑒  
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Lemma 3: if 𝑎 is any element of S, and if 𝑒1𝑎𝑛𝑑 𝑒2  both satisfy 1 then 𝑒1 = 𝑒2 

Proof:  

Let 𝑎1 and 𝑎2 be inverses of 𝑎 relative to 𝑒1 and 𝑒2 respectively as given by (2) 

𝑎𝑎1 = 𝑎1𝑎 = 𝑒1, 𝑎𝑎2 = 𝑎2𝑎 = 𝑒2 

𝑡ℎ𝑒𝑛  
𝑒1𝑒2 = 𝑒1𝑎𝑎2 = 𝑎𝑎2 = 𝑒1 

𝑒1𝑒2 = 𝑎1𝑎𝑒2 = 𝑎1𝑎 = 𝑒1 

𝑤ℎ𝑒𝑛𝑐𝑒 𝑒1 = 𝑒2 

A belong to the uniquely determined idempotent element e satisfying (1) 

Lemma 4: The set 𝑆𝑒 of all elements of S belong to the idempotent element 𝑒 of S and is a group 

with identity 𝑒. 

The set 𝑠𝑒 of all elements of S belonging to the idempotent element 𝑒 of 𝑆 is a group with identity 𝑒. 

Proof: 

Let 𝑎 and 𝑏 be any two element of S, and let 𝑎1and 𝑏1 be inverses of a and b relative to 𝑒. Then 

𝑒 is evidently an identity element of ab and 𝑏1𝑎1 is an inverse of ab relative to e. 

𝑎𝑏𝑏1𝑎1 = 𝑎𝑒𝑎1 = 𝑎𝑎1 = 𝑒 

    𝑏1𝑎1𝑎𝑏 = 𝑏1𝑒𝑏 = 𝑏1𝑏 = 𝑒 

Hence ∈ 𝑆𝑒 . Evidently 𝑒 ∈ 𝑆𝑒, since 𝑒2 = 𝑒, 𝑎𝑛𝑑 𝑒 is an identity element of 𝑆𝑒 . If 𝑎 is any 

element of 𝑆𝑒, 𝑎1 an inverse  of 𝑎 relative to 𝑒, and 𝑎1𝑏 = 𝑒𝑎1𝑒  

Then 𝑒𝑏 = 𝑏𝑒 = 𝑏 

𝑎𝑏 = 𝑎𝑒𝑎1𝑒 = 𝑎𝑎1𝑒 = 𝑒𝑒 = 𝑒 

𝑎1𝑏𝑎 = 𝑒𝑎1𝑒𝑎 = 𝑒𝑎1𝑎 = 𝑒𝑒 = 𝑒 

Hence 𝑏 ∈ 𝑆𝑒 and 𝑏 is an inverse of 𝑎 therein, thus 𝑆𝑒 is a group 

Now by (1) every element of S belongs to at least one of the groups 𝑆𝑒, and by lemma 3 to exactly 

one, Hence S is the class sum of the mutually disjoint 𝑆𝑒. 

Note : 

• Every inverse semigroup is a regular semigroup but the reverse does not follow 

Lemma 5: if S is a semigroup admitting relative inverses and if 𝑒 and 𝑓 are idempotent of S such 

that 𝑒 ≤ 𝑓and 𝑓 lies in 𝑆𝑒𝑆, then 𝑒 = 𝑓 

Proof 

From 𝑓 ∈ 𝑥𝑦 for some 𝑥 and 𝑦 in S, 
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Setting 𝑎 = 𝑓𝑥𝑓, 𝑏 = 𝑓𝑦𝑓 and using 𝑓𝑒 = 𝑒𝑓 = 𝑒 we have 𝑎𝑒𝑏 = 𝑓𝑥𝑓𝑓𝑦𝑓 = 𝑓𝑥𝑒𝑦 = 𝑓𝑓𝑓 = 𝑓 

together with 𝑓𝑎 = 𝑎𝑓 = 𝑎, 𝑓𝑏 = 𝑏𝑓 = 𝑏 

Let 𝑔 be the idempotent to which 𝑎 belongs. Then  

𝑓 = 𝑎𝑒𝑏 = 𝑔𝑎𝑒𝑏 = 𝑔𝑓 = 𝑎−1𝑎𝑓 = 𝑎−1𝑎 = 𝑔 

Hence 𝑎 belong to 𝑓, and similarly 𝑏 belong to 𝑓. consequently  

𝑎−1𝑓𝑏−1 = 𝑎−1𝑎𝑒𝑏𝑎𝑏−1 = 𝑓𝑒𝑓 = 𝑒 

Since 𝑎−1 and 𝑏−1 are in 𝑆𝑓, this implies that e is in Sf where 𝑒 = 𝑓 

Lemma 6: A simple semigroup S with zero is completely simple iff it admits relative inverses. 

Proof  

Condition (1) for complete simple holds by hypothesis condition (ii) follows from lemma 3 

condition (iii) holds from lemma 5 since 𝑆𝑒𝑆 = 𝑆 

Definition 1.7 

Strong semilattice of a group;- let Y be a semilattice for each 𝛼 ∈ 𝑌  let 𝑠𝛼 be a semigroup and 

assume that 𝑠𝛼 ∧ 𝑠𝑏 = ∅    if 𝛼 ≠ 𝛽for each 𝛼, 𝛽𝜖𝑌 such that 𝛼 ≥ 𝛽,there exists homomorphism. 

𝜑𝛼,𝛽: 𝑠𝛼  ⟶ 𝑠𝛼𝛽 such that 

• 𝜑𝛼,𝛼 = 1𝑠𝛼  

• For any 𝛼, 𝛽, 𝛾 ∈ 𝑌 with 𝛼 ≥ 𝛽 ≥ 𝛾 so that 𝜑𝛼,𝛽𝜑𝛽,𝛾 for multiplication on 𝑆 =∪𝛼∈𝑌 𝑆𝛼 in 

terms of multiplications in the 𝑠𝛼 and  the homomorphism 𝜑𝛼,𝛽for each x in 

𝑆𝛼  𝑎𝑛𝑑 𝑌 𝑖𝑛 𝑆𝛽 so that 

𝑥𝑦 = 𝑥𝜑𝛼,𝛼𝛽𝑦𝜑𝛽,𝛼𝛽 

Then S with the multiplication above is a strong semilattice Y of semigroup 𝑆𝛼,to be 

denoted by  

𝑆[𝑌: 𝑆𝛼,𝜑𝛼,𝛽] 

The homomorphism of S and if 𝑆𝛼 ∈ 𝜔 for all 𝛼 ∈ 𝑌 and some class of semigroup 𝜔 then 

S is a strong semilattice of type 𝜔 

Definition 1.8 

Completely regular semigroup:-This is a semigroup in which every element is in some subgroup 

of the semigroup. 

Definition 1.9 

Center of a semigroup:- The center of a semigroup  (𝑆,°) denoted by 𝑍(𝑠) is the subset of element 

in S that commute with every element in s symbolically: 𝑧(𝑠) = {𝑠 ∈ 𝑆: ∀𝑥 ∈ 𝑆: 𝑠𝑜𝑥 = 𝑥𝑜𝑠 
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Theorem 2: If all idempotent of a completely regular semigroup S are central then the semigroup 

can be expressed as a strong semilattice of a group 

To solve this let first state some lemmas 

Lemma 6: 

If an ideal 𝑎 contains a single element of the group 𝑆𝑒  then it contains all of 𝑆𝑒. In particular, if 

𝑎𝑛 belongs to an ideal 𝑎 itself belongs to 𝑎 

Proof: 

Let 𝑎 be an element in both 𝑎 and 𝑆𝑒 ,then 𝑎 contains 𝑎−1𝑎 = 𝑎 if b is any other element of 𝑆𝑒 , 

then 𝑎 contains 𝑏𝑒 = 𝑏 

Hence 𝑎 ⊇ 𝑆𝑒. The second statement then follows from the fact that 𝑎𝑛 belongs to the same group 

𝑆𝑒 𝑎𝑠 𝑎 

Back to the proof of theorem 2: 

Let 𝜔 be any semilattice and to each 𝛼 in 𝜔 assign a group 𝑆𝛼  such that no two of them have an 

element in common. 

To each pair of element 𝛼 > 𝛽 of 𝜔 assign a homomorphism 𝜑𝛼,𝛽 of 𝑆𝛼 into 𝑆𝛽 such that if 𝛼 >

𝛽 > 𝛾 then  

𝜑𝛼,𝛽𝜑𝛽,𝛾 = 𝜑𝛼,𝛾 

Let 𝜑𝛼,𝛼 be the identical automorphism of 𝑆𝛼 let S be the class sum of the group 𝑆𝛼, and define 

the product of any two elements 𝑎𝛼, and 𝑏𝛽of S (𝑎𝛼 𝑖𝑛 𝑆𝛼 𝑎𝑛𝑑 𝑏𝛽 𝑖𝑛 𝑆𝛽) by  

𝛾𝛼𝑏𝛽 = (𝑎𝛼𝜑𝛼,𝛾)(𝑏𝛽𝜑𝛽,𝛾) 

Where  𝛾 = 𝛼𝛽 is the product of  𝛼 𝑎𝑛𝑑 𝛽 𝑖𝑛 𝜔  

Conversely any semigroup S constructed in this fashion admits relative inverse and idempotent 

element of 𝑆𝛼 in the center of S. 

2  KG-System Of Semigroup 

In this section, we introduce the concept of KG-strong semilattice decomposition of a semigroup 

S = (Y ; Sα), where Y is a semilattice and each Sα is a subsemigroup of S . In this paper, we always 

denote a semigroup S which is a semilattice Y of subsemigroups Sα(α ∈ Y ) by S = (Y ; Sα).  

Definition 2.1 Let S = (Y ; Sα) be a semigroup. Suppose that the following conditions hold on the 

semigroup S.  

I) (∀α, β ∈ Y,α ≥ β), there exists a family of homomorphisms 
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 𝜑𝑑(𝛼,𝛽): Sα ⟶ Sβ , where d(α, β) ∈ D(α, β) and D(α, β) is a non-empty index set which 

runs between the interval [α, β] 

II) (∀α ∈ Y ), D(α, α) is a singleton set. Denote the element in D(α, α) by  

d(α, α). In this case, the homomorphisms φd(α,α): Sα ⟶  Sα is the identity automorphism 

of the semigroup Sα . 

III) (∀α, β, γ ∈ Y,α ≥ β ≥ γ), if we write Φα,β = {𝜑𝑑(𝛼,𝛽):d(α, β) ∈ D(α, β)} then Φα,β Φβ,γ ⊆ 

Φα,γ ,  

where Φα,β Φβ,γ = {𝜑𝑑(𝛼,𝛽)𝜑𝑑(𝛽,𝛾)∀d(α, β) ∈ D(α, β), d(β, γ) ∈ D(β, γ)} 

IV)  (∀a ∈ Sα)(∀β ∈ Y ), there exists a unique 𝜑𝑑
𝑎

(β,αβ) ∈ Φβ,αβ such that for any   

b ∈ Sβ, 

             ab = (a𝜑𝑑(𝛼,𝛼𝛽)
𝑏 )(b𝜑𝑑(𝛽,𝛼𝛽)

𝑎 ).  

Remark : An index set is a set whose members or elements index (label) are members or elements 

of another set. 

 

We call the above semilattice of semigroups Sα, with a set of structure homomorphisms Φα,β , a 

generalized strong semilattice if S = (Y ; Sα) satisfies the above conditions i)–iv).The above 

generalized strong semilattice of Sα  is called the “G-strong semilattice” of Sα and is denoted by S 

= G[Y ; Sα, Φα,β]. The following definition is a stronger version of G-strong semilattices. 

 Definition 2.2 

 Let K be an equivalence relation on a G-strong semilattice of semigroups S = G[Y ; Sα, Φα,β]. We 

say that S is a KG-strong semilattice of semigroups if for each α, β ∈ Y , the mapping a ⟶ 𝜑𝑑(𝛽,𝛼𝛽)
𝑎  

has the property that 𝜑𝑑(𝛽,𝛼𝛽)
𝑎 = 𝜑𝑑(𝛽,𝛼𝛽)

𝑏  whenever the elements a, b ∈ Sα belong to the same K-

class. Hence under the above multiplication, we obtain a G-strong semilattice of semigroups S 

determined by the equivalence relation K. We therefore call S a KG-strong semilattice of Sα and 

denote it by S = KG[Y; Sα, Φα,β]. Note. It is clear that the KG-strong semilattice is stronger than 

the G-strong semilattice but it is weaker than the strong semilattice. In fact, if ρ and δ are 

equivalences on the semigroup S = (Y ; Sα) with ρ ⊆ δ , then we observe that, δG[Y ; Sα, Φα,β] is 

“stronger” than ρG[Y ; Sα, Φα,β]. As the special case, 1SG[Y ; Sα, Φα,β] is the “weakest” KG-strong 

semilattice since 1S is the “smallest” equivalence relation on S and ηG[Y ; Sα, Φα,β] is the strongest 

KG-strong semilattice since η is the “biggest” equivalence relation on S , where 1S is the identity 

equivalence relation on S and η is the semilattice congruence on S which divides S into Sα(α ∈ Y 

). Hence, it can be easily seen that ηG[Y ; Sα, Φα,β] is the usual strong semilattice since in this case, 

every index set D(α, β) is a singleton for α ≥ β on Y and hence there exists one and only one 

homomorphism in the set of structure homomorphisms Φα,β . 

 We observe that if the set D (α, β) for α ≥ β is just a singleton then the G-strong semilattices, KG-

strong semilattices and strong semilattices are the same since there is no distinction between their 

respective multiplications. 
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Note: our k could be any one of the known Green’s relations or any of the generalized Green 

relations, say 𝐿, 𝑅, 𝐷 𝑎𝑛𝑑 𝐻, 𝐿∗, 𝑅∗, �̃� 𝑒. 𝑡. 𝑐 

After the 𝐺𝑟𝑒𝑎𝑛 ∼ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 �̃�, �̃�, �̃�, �̃� 𝑎𝑛𝑑 𝐽 have been defined on a semigroup S, we will then 

consider the influence of the 𝐺𝑟𝑒𝑎𝑛 ∼ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 for the purpose of clearity let us define some 

related terms 

Definition 2.3 

A left (right) ideal 𝐿(𝑅) of a semigroup is called a left (right)𝑖𝑑𝑒𝑎�̃� of S if �̃�𝑎 ⊆ 𝐿(�̃�𝑎 ⊆ 𝑅) holds, 

for all 𝑎 ∈ 𝐿(𝑎 ∈ 𝑅). We call a subset I of a semigroup S an 𝑖𝑑𝑒𝑎�̃� of S if it is both a left 𝑖𝑑𝑒𝑎�̃� 

and right 𝑖𝑑𝑒𝑎�̃�. 

From the above definition we can easily see that if the semigroup S is regular , then every left(right, 

two-sided) ideal of S is a left (right, two-sided) 𝑖𝑑𝑒𝑎�̃� secondly for any idempotent 𝑒 ∈ 𝑆, the left 

(right) ideal 𝑆𝑒(𝑆𝑒) is always a left (right) 𝑖𝑑𝑒𝑎�̃� for if 𝑎 ∈ 𝑆𝑒, then it is clear that 𝑎 = 𝑎𝑒. And 

hence for every  element 𝑏 ∈ �̃�𝑎 we have 𝑏 = 𝑏𝑒 ∈ 𝑆𝑒. 

 

 

Definition 2.4  

A semigroup S is called 𝐻 − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 if every �̃� − 𝑐𝑙𝑎𝑠𝑠 contains an idempotent of S. Clearly, 

the �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup in the class of semiabundant semigroup. 

Definition 2.5 

An �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup S is called completely 𝐽 − 𝑠𝑖𝑚𝑝𝑙𝑒 is 𝑆 ≠ 𝑆2 and S does not contain 

any non-trivial proper 𝑖𝑑𝑒𝑎�̃� 𝑜𝑓 𝑆. 

3    PROPERTIES OF  �̃� − 𝒂𝒃𝒖𝒏𝒅𝒂𝒏𝒕 

1) Lemma 7: let S be an  �̃� − 𝒂𝒃𝒖𝒏𝒅𝒂𝒏𝒕 semigroup, the the following properties hold: 

• The 𝐺𝑟𝑒𝑒𝑛~𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 �̌� is a congruence on S iff 𝑎, 𝑏 ∈ 𝑆 (𝑎𝑏)0 = (𝑎0𝑏0)0 

• If 𝑒, 𝑓 are 𝑎𝑟𝑒 �̌� 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡𝑠 of S, then 𝑒𝐷𝑓 

• �̌� = �̃�𝑜�̃� = �̃�𝑜�̃� 

•  Then If 𝑒, 𝑓 are idempotents in S such that 𝑒𝐽𝑓 then 𝑒𝐷𝑓 

Proof.  

(i) We need to show that �̃� is compatible with the semigroup multiplication of S since �̃� 

is an equivalent relation on S. Let (𝑎, 𝑏)  ∈  �̃� and 𝑐 ∈  𝑆. Then (𝑐𝑎)0 = (𝑐0𝑎0)0 =
(𝑐0𝑏0)0=(𝑐𝑏)0 and hence, �̃�  is left compatible to the semigroup mulcatiplication. In 

the same way, �̃�  is right compatible with the semigroup multiplication hence, is �̃� a 

congruence on S. 
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(ii) Since 𝑒�̃�𝑓, there exist elements 𝑎1,· · · , 𝑎1 of S such that 𝑒�̃�𝑎1�̃�𝑎2 · · · 𝑎𝑘�̃�𝑓. Since S 

is an �̃�-abundant semigroup, 𝑒𝐿𝑎1
0𝑅𝑎2

0  · · ·  𝑎𝑘
0𝐿𝑓. Thus eDf.  

(iii)    

Proof 

�̃� = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: (∀𝑒 ∈ 𝐸(𝑠))𝑎𝑒 = 𝑎 ⇔ 𝑏𝑒 = 𝑏 

�̃� = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: (∀𝑒 ∈ 𝐸(𝑠))𝑒𝑎 = 𝑎 ⇔ 𝑒𝑏 = 𝑏 

Let S be a semigroup, let 𝑎, 𝑏 ∈ �̃� ∘ �̃� then there exists 𝐶 𝑖𝑛 𝑆 

 Such that 𝑎�̃�c and 𝑐�̃�𝑏 and 𝑐�̃�b so that  

𝑎𝑒 = 𝑐      𝑓𝑐 = 𝑏  

𝑐𝑒 = 𝑎      𝑓𝑏 = 𝑐 

Were 𝑒, 𝑓 ∈ 𝐸(𝑆) 

Then let 𝑢 = 𝑓𝑐𝑒 

𝑓𝑎 = 𝑓𝑐𝑒 = 𝑢 

𝑓𝑢 = 𝑓𝑓𝑐𝑒 = 𝑓𝑏𝑒 = 𝑐𝑒 = 𝑎 

So that we have  𝑎�̃�𝑢 secondly 

𝑢𝑒 = 𝑓𝑐𝑒𝑒 = 𝑓𝑎𝑒 = 𝑓𝑐 = 𝑏 

𝑏𝑒 = 𝑓𝑐𝑒 = 𝑢 so that we will have 𝑢�̃�𝑏 

Hence 𝑎, 𝑏 ∈ �̃�0�̃� 

 

(iv) Since 𝑆𝑒𝑆 =  𝑆𝑓𝑆, there exist elements 𝑥, 𝑦, 𝑠, 𝑡 in S such that 𝑓 =  𝑠𝑒𝑡 and 𝑒 =  𝑥𝑓𝑦. 

Let ℎ =  (𝑓𝑦) 0 and 𝑘 =  (𝑠𝑒) 0 . Then ℎ𝑓𝑦 =  𝑓𝑦 =  𝑓𝑓𝑦 and so ℎ = ℎ2 =  𝑓ℎ and 

𝑠𝑒𝑘 =  𝑠𝑒 =  𝑠𝑒𝑒, and thereby, 𝑘 =  𝑘3 =  𝑘𝑒. Hence, ℎ𝑓, 𝑒𝑘 are the idempotents 

satisfying the relations ℎ𝑓𝑅ℎ and 𝐿𝑘 . These imply that 𝑒ℎ𝑓𝑅𝑒ℎ and 𝑒𝑘𝑓𝐿𝑘𝑓. Now by 

𝑒ℎ =  𝑥𝑓𝑦ℎ =  𝑥𝑓𝑦 =  𝑒 𝑎𝑛𝑑 𝑘𝑓 =  𝑘𝑠𝑒𝑡 =  𝑠𝑒𝑡 =  𝑓, we have 𝑒𝑅𝑒𝑓𝐿𝑓. This 

shows that 𝑒𝐷𝑓.  

 

2) If a semigroup is �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 then every element of S is abundant, meaning 

that it has a dense set of idempotents in it’s �̃� − 𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝. 

3) If a semigroup S is �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡, then S is regular, meaning that every element has an 

inverse. 
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Lemma 8: If 𝑎 is a regular element of a semigroup S, say 𝑎𝑥𝑎 = 𝑎 with 𝑥 𝑖𝑛 𝑆 then 𝑎 has at least 

one inverse in S, in particular 𝑥𝑎𝑥 

Proof : 

Let 𝑏 = 𝑥𝑎𝑥 then 

𝑎𝑏𝑎 = 𝑎𝑥𝑎𝑥𝑎 = 𝑎𝑥(𝑎𝑥𝑎) = 𝑎𝑥𝑎 = 𝑎 

𝑏𝑎𝑏 = 𝑥𝑎𝑥𝑎𝑥𝑎𝑥 = 𝑥(𝑎𝑥𝑎)𝑥𝑎𝑥 = 𝑥𝑎𝑥𝑎𝑥 = 𝑥𝑎𝑥 = 𝑏 

Since �̃� has been proven to be regular invariably every element in �̃� is a regular element and from 

lemma 8 every regular element has an inverse 

Therefore if every element has an inverse then �̃� has an inverse.  

It won’t be wrong to say �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 is an inverse semigroup.  

 

 

4) If a semigroup S is �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡, then S is an inverse semigroup, i.e every element has a 

unique inverse 

5) The �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡  is a special case of Green’s L- and R-relations and thus, many results 

about Green’s relations can be applied to �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝  

6) The union of �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 is also �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝 

 

Examples of �̃� − 𝒂𝒃𝒖𝒏𝒅𝒂𝒏𝒕 𝒔𝒆𝒎𝒊𝒈𝒓𝒐𝒖𝒑 

A 2x2 matrix can be used to illustrate �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝.  

Let consider 2x2 matices with integer entries, denoted by: 

𝜌 = {(𝑎, 𝑏, 𝑐, 𝑑)/𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍} 

With the usual multiplication operation, 𝜌 𝑓𝑜𝑟𝑚𝑠 𝑎 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝. For 𝜌 to satisfy the 

𝐺𝑟𝑒𝑒𝑛~ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 we need to define a specific operation and identify the required element. 

Lets define the operation ∗ 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 

(
𝑎 𝑏
𝑐 𝑑

) ∗ (
𝑒 𝑓
𝑔 ℎ

) = (
max (𝑎, 𝑒) max (𝑏, 𝑓)
max (𝑐, 𝑔) max (𝑑, ℎ)

) 

The operation combines matrixes by taking the maximum value for each entry. 

Remark: 

• The identity matrix with respect to the operation defined above  is (
0 0
0 0

)  
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• The idempotent matrix will be all 2x2 matrices of the form (
𝑎 𝑎
𝑏 𝑏

) 

3. RELATING GROUP HOMORPHISM TO SEMIGROUP HOMOMORPHISM 

Firstly, we will look at similarities in constructing a homomorphism for both a semigroup and a 

group admitting semilattice decomposition. 

Let’s look at similarities in the steps: 

1) Identify the decomposition: recognize the semilattice decomposition in both cases  

2) Define the target structure: specify the target semigroup or group 

3) Map elements: Define the homomorphism by mapping elements from each semilattice to 

the target structure 

4) Preserve operation: ensure the homomorphism preserves the operation with each 

semilattice and between elements from different semilattices 

5) Check that the homomorphism is well define 

EXAMPLE 

Let define a semigroup 

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} with operation ∗ define on it such that: 

𝑎 ∗ 𝑏 = 𝑐, 𝑏 ⋇ 𝑐 = 𝑎, 𝑐 ⋇ 𝑎 = 𝑏, 𝑎 ⋇ 𝑎 = 𝑏 ⋇ 𝑏 = 𝑐 ⋇ 𝑐 = 𝑑,  

𝑑 ⋇ 𝑥 = 𝑥 ⋇ 𝑑 = 𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑆 

S admits semilattice decomposition decomposition: 

𝑆 = 𝑆1 ⊔ 𝑆2  where 𝑆1 = {𝑎, 𝑏. 𝑐} and 𝑆2 = 𝑑 

Identity automorphism on S  

𝜌: 𝑆𝑛 → 𝑆𝑛 

Define by 𝜌(𝑥) = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑆 

For groups we have 𝐺 = {𝑒, 𝑎, 𝑏, 𝑐, 𝑑} with operation ⨀ defined by 

𝑒⨀𝑥 = 𝑥⨀𝑒 = 𝑥,  𝑎⨀𝑏 = 𝑐, 𝑏⨀𝑐 = 𝑎, 𝑐⨀𝑎 = 𝑏, 𝑎⨀𝑎 = 𝑏⨀𝑏 = 𝑐⨀𝑐 = 𝑑 

𝑑⨀𝑥 = 𝑥⨀𝑑 = 𝑑( 𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) 

G admits semilattice decomposition so that 𝐺 =  𝐺1 ⊔ 𝐺2   where 𝐺1 = {𝑒, 𝑎, 𝑏, 𝑐, } and 𝐺2{𝑑} 

Identity automorphism on G: 

𝜌: 𝐺 → 𝐺 𝑑𝑒𝑓𝑖𝑛𝑒 𝑏𝑦 𝜌(𝑥) = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝐺 

Let’s outline the similarities from the example above: 
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1) Both S and G have semilattice decomposition into two componenets 

2) The identity automorphism 𝜌 maps every element to itself in both S and G 

3) The operators ⋇,⊚ are preserved  by 𝜌 in both cases 

4) The component 𝑆1 𝑎𝑛𝑑 𝐺1 have similar structures with {𝑎, 𝑏. 𝑐} forming a cyclic semigroup 

in both cases  

RELATING GROUP THEORY TO �̃� − 𝑨𝑩𝑼𝑵𝑫𝑨𝑵𝑻 𝑺𝑬𝑴𝑰𝑮𝑹𝑶𝑼𝑷 

�̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 Semigroup is a type of semigroup that satisfies certain properties. Here’s how 

group theory relate to it: 

• Subsemigroups: in group theory, subgroups are subsets that are closed under the operation. 

similarly, in a  �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup, subsemigroup can be identified, which are 

subsets closed under the operation 

Example: consider the semigroup S={𝑎, 𝑏, 𝑐} 𝑤𝑖𝑡ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∘  define by 𝑎 ∘ 𝑏 = 𝑐, 𝑏 ∘ 𝑐 =
𝑎, 𝑐 ∘ 𝑎 = 𝑏  

The subset {𝑎, 𝑏} is a subsemigroup 

• Homomorphism: Group homomorphisms preserve the operation, similarly, semigroup 

homomorphisms between �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroups preserve the operation. 

Example: consider two semigroup S={𝑎, 𝑏, 𝑐} 𝑎𝑛𝑑 𝑇 = {𝑥, 𝑦, 𝑧} with operation ∘ 𝑎𝑛𝑑 ⋇ 

respectively. A homomorphism 𝜌: 𝑆 ⟶ 𝑇 can be defined by: 

𝜌(𝑎) = 𝑥, 𝜌(𝑏) = 𝑦, 𝜌(𝑐) = 𝑧 Such that  

𝜌(𝑎 ∘ 𝑏) = 𝜌(𝑐) = 𝑧 = 𝑥 ⋇ 𝑦 = 𝜌(𝑎) ⋇ 𝜌(𝑏) 

• Congruences: in group theory, congruences are equivalence relations that preserve the 

operation. Similarly, in a �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroup congruences can be defined, which 

are equivalence relations that preserve the operation. 

Example: consider the semigroup S={𝑎, 𝑏, 𝑐} with operation∘. A congruence relation ≡ can be 

defined by: 

𝑎 ≡ 𝑏, 𝑏 ≡ 𝑐, 𝑐 ≡ 𝑎 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖𝑓 𝑎 ≡ 𝑏, 𝑡ℎ𝑒𝑛 𝑎 ∘ 𝑐 ≡ 𝑏 ∘ 𝑐 

These are just a few examples of how group theory concepts relate to �̃� − 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑡 semigroups. 

The connections can be further explored in terms of ideals, Green’s relations, and other semigroup 

properties. 
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